The Social Stratification of (r) in Boston*

Joshua Levy
McGill University

Employing Labov’s (1966) rapid and anonymous method of data collection, 90 tokens of Bostonian (r) were gathered and subjected to multivariate analyses showing significant correlations of (r) with sex, social class and neighborhood, though none with age. Contrary to past claims, I suggest (r) is in a state of stable variation in Boston.

1. Introduction

The speech of Boston is famous for its “r-dropping” in which an underlying representation of /r/ in the coda of a syllable is vocalized. This phenomenon is referred to as the sociolinguistic variable (r). Its fame in Boston is often attributed to the variable’s early origins in the city and to the national prominence of Boston-based educational institutions such as Harvard University (Fitzpatrick, 2006, p. 64-66). During several periods in history, Boston’s prominence and prestige have led to the spread of /r/-vocalization beyond Boston, earning the city the designation of “focal area” of /r/-vocalization in the eastern United States (Wardaugh, 2006, p. 137). However, the former spread of /r/-vocalization outwards from Boston has reversed and is now in the process of recession. Since 1939, academics have written, in various wordings, that “eastern New England…is characterized by a distinct local dialect that is gradually receding due to the influence of ‘general American’ speech” (Roberts, Nagy & Boberg, 2006, p. 61). While comparisons between the Linguistic Atlas of New England (Kurath et al. 1939-41) and the Atlas of North American English (Labov, Ash & Boberg, 2006) confirm this general observation, little research has been conducted on the vitality of /r/-vocalization in Boston, proper. This study complements Irwin & Nagy’s (2007) preliminary findings on careful speech in Boston with new data from casual speech in hopes of robustly characterizing the sociolinguistic variation and vitality of (r) in Boston in terms of age, sex, race, social class and city neighborhood.

2. History

The origins of /r/-vocalization are found in southern England in the early 15th century (Wyld, 1936). However, /r/-vocalization did not spread to the capital of London until the late 18th century (Pyles, 1964). Since Boston was settled in 1630 by natives of Lincolnshire, England (Fitzpatrick, 2006, p. 64), it is very unlikely that these settlers exhibited /r/-vocalization. This inference is confirmed by native Bostonian Benjamin Franklin’s efforts to simplify English spelling in the 1750s, showing clearly that Benjamin Franklin used a rhotic /r/ in his speech (Franklin, 1768). Several scholars (Parslow, 1967; Carlson, 1973; McCarthy, 1991) note that /r/-vocalization did not spread widely in Boston until after the American Revolution. They point to Noah Webster’s warnings against /r/-vocalization around 1800 as the start of the /r/-vocalization trend in Boston. As displayed

*I would like to thank Charles Boberg for his helpful comments and invaluable guidance.

1 For the purposes of this study Harvard Square is considered a part of Boston, proper.

2 This estimation may be exceedingly conservative given Pyles’s (1964, p. 176) assessment that “…many of the pronunciations which [Noah Webster] prescribed, were scorned by the proper Bostonians of his day.”
in the writings of Bostonians Oliver Wendell Holmes, Sr. and James Russell, /r/-vocalization did not become standard in the Boston area until the 1840s when it was adopted as the prestige form and remained standard up until World War II.

World War II marked a linguistic shift as men from across the United States who spoke varying dialects were sent overseas to live and fight in close proximity for extended periods of time. As a result of this environment of prolonged contact between dialects where men exhibiting /r/-vocalization were in the minority, the rhotic /r/ supplanted postvocalic /r/-vocalization as the prestige form. Informed by Labov’s (1966) findings of hypercorrection and of diminished /r/-vocalization among successively younger generations in his study of (r) in New York City, Labov predicted generally that “the vocalization of /r/ is eroding.” However, Labov was not the first to predict such an erosion as applied to Boston. Bloch (1939, p. 196-199) noticed the encroachment of rhotic /r/ speech traditionally found west of the Connecticut River into eastern Massachusetts:

the eastward extension of the pronunciation with r reflects...a gradual victory of the chief type of American English over a specifically provincial dialect [/r/-vocalization]...it is at least possible that some day the r...will be reintroduced even in those parts of New England from which it is now disappearing.

Irwin & Nagy (2007) have echoed the predictions of both Labov and Bloch in their recent quantificational study of (r) in careful speech in Boston. They say, “r-vocalization is undergoing a change: younger speakers delete /r/ less frequently, even taking into account differing degrees of education and income.”

Since the three studies described above all point to the decline of rhotic /r/ in Boston, their results should corroborate each others’ findings, assuming the observed declines result from a single continuous trend. However, the differing methodologies and results of the three studies do not lend themselves to comparison, let alone corroboration. Where Kurath et al. (1939-41) compare isoglosses of New England using data gathered from 1-3 individuals per county, Labov (1966) performs quantificational comparisons of (r) using data gathered from 264 individuals in Rapid and Anonymous casual speech. Irwin & Nagy’s (2007) methods are similarly incompatible; they perform quantificational comparisons of (r) using data gathered from 24 individuals’ reading of texts in careful speech.

As for the results of these studies, neither Kurath et al. (1939-41) nor Kurath (1939) include data on the backgrounds of their informants, making comparisons with both Labov’s (1966) and Irwin & Nagy’s (2007) results futile. The primary results that lead Labov (1966) to conclude that /r/-vocalization is receding are analyses of variation by department store, department store occupation, and estimated age subdivided by department store. These results are also supported by data from Labov’s (1966) Lower East Side study through an analysis of variation by age subdivided by social class. The primary results that lead Irwin & Nagy (2007) to the same conclusion are analyses of variation by education, income, and age subdivided by sex. The results reported by Labov (1966) and Irwin & Nagy (2007) offer no common ground for comparison.

The solution pursued in this study was to collect data of casual Bostonian speech employing Labov’s (1966) Rapid & Anonymous methodology and examining subsets of the social variables investigated by both Labov (1966) and Irwin & Nagy (2007). Not only does this allow for comparisons between the two studies, but it also introduces data of Bostonian casual speech where none before existed in the literature.

3 This geolinguistic boundary is confirmed by Kurath (1939).
3. Methods

Data was collected through a Rapid and Anonymous (Labov, 1966) paradigm and was subjected to two multivariate analyses using Goldvarb (Cedergren & Sankoff, 1974; Rousseau & Sankoff, 1978; Sankoff, Tagliamonte and Smith, 2005).

3.1 Data Collection

The data collection was conducted by the author on October 13, 2008 while dressed in a t-shirt and jeans with no visible geographic or athletic team name or insignia. The author employed his natural rhotic /r/ pronunciation as a native of a suburb west of Boston. The date coincided with Game 3 of the American League Championship Series (ALCS), held at Fenway Park in Boston. An informant’s use of (r) was obtained in response to one of two questions asked:

(1) What’s the closest T⁴ stop?
(2) I’m trying to get to the (Red Sox) game (by T)⁵…

Question (1) was asked at Fenway Park and in Kenmore Square. Question (2) was asked elsewhere in Boston (see Section 3.3 for a discussion of the other neighborhoods in question). The correct response to both questions must have included the name of the T stop closest to Fenway Park: “Kenmore.”⁶

In designing questions (1-2), a conscious decision was made to exclude any token of (r) so as not to bias the interviewer’s response. Moreover, Boston colloquialisms T and the game are natural in the speech of the author. The retention of these colloquialisms were thought to contribute to the elicitation of casual, unmonitored speech from informants by appealing to audience design (Bell, 1984) by firstly ensuring casual speech from the interviewer and by realistically convincing the informants that the author is a member of their speech community.

Informants were selected under one of two conditions: (a) they were visibly on-duty at work or (b) they were en route⁷ to or at Fenway Park with the intention of attending Game 3 of the ALCS. Informants selected by condition (a) were identified in different ways depending on their occupation. For instance, police officers were identified by the their wearing a uniform; clerks were identified by their wearing a name tag and/or standing behind a sales counter; and scalpers were identified by their repetition of “tickets” or “need tickets?” while standing on the sidewalk wearing plain street clothes.

⁴ In Boston, the subway system is referred to as “the T.”
⁵ Contents in parenthesis were usually uttered only in cases where subjects sought clarification. On the day of a Red Sox home game, the game is a widely recognized abbreviation for “the Red Sox game.” Due to the lack of parking at Fenway Park and the disruptions in traffic flow that home games cause, the T has become a standard method for getting to Fenway Park.
⁶ In response to question (1), a few subjects answered “Fenway,” another T stop approximately equidistant to Fenway Park as Kenmore. These responses were excluded and these subjects were not asked again. The Fenway stop lies on the “D” branch of the Green Line that primarily serves the western suburbs of Boston and is the recommended stop to access Fenway Park when traveling from west of Boston. That all the tokens included in this study are “Kenmore” and were said without hesitation gives added confidence that respondents to question (1) were residents of Boston proper, being both familiar with the T system and seemingly not travelers from west of Boston.
⁷ To be considered en route, the prospective informant must have either been walking from Kenmore Station in the direction of Fenway Park accompanied by at least one other social companion (to distinguish from scalpers who tend to walk unaccompanied) or on the Green Line in the direction of Kenmore Station noticeably conversing with a companion about the approaching game.
Informants selected by condition (b) were identified by their wearing Red Sox jerseys and/or hats. These informants shall hereafter be referred to as “Red Sox Fans.”

These conditions allowed for the consideration of a composite social variable based on informants’ occupation and attendance at a Red Sox game. This variable is meant to approximate Social Class and shall hereafter be referred to as “Social Class Composite.” Its two components are well suited to approximate Social Class. Occupation has historically been a prime indicator of social class (Wyld, 1907) and has been shown more recently to correlate strongly with socioeconomic status (Labov, 1980). Since Fenway Park had the highest average ticket price\(^8\) and Fan Cost Index\(^9\) in Major League Baseball during the 2008 season (Team Marketing Report, 2008) it seemed reasonable that attendees would be members of one of the highest social classes. While not attending a Red Sox game does not exclude someone from being a member of the same high social class, the blue collar occupations examined in this study made this possibility less likely.

Once a response was elicited, I moved beyond the informant’s view and recorded the informant’s use of (r) in the token word “Kenmore” as well as the following independent variables: the informant’s occupation or whether they were a Red Sox Fan, sex, race, age (estimated in units of ten years), and the neighborhood in Boston where the encounter took place.

3.2 Coding

(r) was treated as a binary variable. Rhotic /r/ was labeled (r-1) and vocalized /r/ was labeled (r-0).

Since there were many occupations represented among informants, a decision was made to collapse the occupations into three categories. Vendors, scalpers and other informants whose workplace was outdoors were grouped together into “Outdoor, Private.” Police officers and T employees were grouped together into “Civil Servants.” Clerks and bookstore employees were grouped together into “Indoor, Private.” It was hypothesized that “Outdoor, Private” employees would represent the lowest social class because of the undesirability of selling low-cost goods outdoors and because of the illegal status of scalpers. “Indoor, Private” employees were hypothesized to represent the highest social class among occupations because of the central role of the service sector in our economy. “Civil Servants” were hypothesized to represent a social class in between “Indoor, Private” and “Outdoor, Private” because of its social acceptability as a profession but clearly blue class nature.

3.3 Social Variables

The social variables examined in this paper were chosen largely because of their well-documented effects on linguistic variation. Regarding Sex, males are hypothesized to exhibit greater use of /r/-vocalization than females due to males’ tendency to embrace markers of local identity and females’ tendency to prefer prestige forms (e.g. Fischer, 1958; Eckert, 1989; Labov, 1990). Regarding Age, if /r/-vocalization in Boston were diminishing in apparent-time as found in New York City (Labov, 1966) and by Irwin & Nagy (2007), it would be expected for the frequency of /r/-vocalization to be directly proportional with age. Regarding Race, it is hypothesized that Black speakers may exhibit a greater frequency of /r/-vocalization than White speakers due to the influence of African American Vernacular English, which displays a near absence of rhotic /r/ in coda position.

8 $48.80
9 $320.71. This index “comprises the prices of two (2) adult average-price tickets, two (2) child average-price tickets, two (2) small draft beers, four (4) small soft drinks, four (4) regular-size hot dogs, parking for one (1) car, two (2) game programs and two (2) least expensive, adult-size adjustable caps.”
Regarding Social Class, the frequency of \(/r/ \)-vocalization is hypothesized to be inversely proportional with social class as higher social classes generally adopt the variant with global prestige (e.g. Fischer, 1958; Labov, 1966; Kroch, 1978).

Investigations of Neighborhood as a social variable have been documented less than the variables above. It has been long observed that there are many dialects of Bostonian English (Parslow, 1967; Carlson, 1973; McCarthy, 1991). These differences are a result of many factors including the social class and racial demographics of residents in these neighborhoods. When considering on-duty employees, the factor group Neighborhood represents the amount that employees match their speech to that of their clientele (Labov, 1966). Accordingly, I hypothesize that people working around Fenway Park would use the highest frequency of \((r-0)\) because Fenway Park is a locus of local identity in Boston while people working in Government Center and Harvard Square would use \((r-0)\) less frequently as a result of these neighborhoods being centers of government and academia. Due to Kenmore Square’s proximity to Fenway Park, use of \((r-0)\) in the two neighborhoods should be similar.

4. Results

Table 1 shows the results of a variable rule analysis of the social factors hypothesized to correlate with \((r)\). Factors selected as statistically significant are indicated by factor weights (FW) in bold while factors not selected as statistically significant are indicated by bracketed FWs. In the case of the latter, FWs are reported from the first run of a step-down analysis in which all factors are considered.

Given that Red Sox Fan is not an occupation, an analysis of variation by neighborhood that includes tokens from these informants would not represent the variation of an employee matching his speech to that of the clientele. Such an analysis would rather represent variation in speech as a function of the neighborhood in which a person finds himself at a given time. There is no indication from prior research that such variation exists, especially as applied to the brevity and frequency associated with intra-city movement, and I do not postulate such variation. Thus, Neighborhood is omitted as a factor group in the analysis shown in Table 1.
Table 1. Variable Rule Analysis of Social Factors Contributing to the probability of \(r \neq 0 \)

<table>
<thead>
<tr>
<th>Input = 0.544, Total N = 90</th>
</tr>
</thead>
<tbody>
<tr>
<td>FW</td>
</tr>
<tr>
<td>-----------------------------</td>
</tr>
<tr>
<td>Sex</td>
</tr>
<tr>
<td>Male</td>
</tr>
<tr>
<td>Female</td>
</tr>
<tr>
<td>Range</td>
</tr>
<tr>
<td>Social Class Composite</td>
</tr>
<tr>
<td>Outdoor, Private (e.g. Vendors, Scalpers)</td>
</tr>
<tr>
<td>Civil Servants (Policemen & T operators)</td>
</tr>
<tr>
<td>Indoor, Private (Clerks)</td>
</tr>
<tr>
<td>Red Sox Fans</td>
</tr>
<tr>
<td>Range</td>
</tr>
<tr>
<td>Age</td>
</tr>
<tr>
<td>50+</td>
</tr>
<tr>
<td>40s</td>
</tr>
<tr>
<td>30s</td>
</tr>
<tr>
<td>20s</td>
</tr>
<tr>
<td>Race</td>
</tr>
<tr>
<td>White</td>
</tr>
<tr>
<td>Black</td>
</tr>
<tr>
<td>Asian</td>
</tr>
</tbody>
</table>

Note: Both Sex and Social Class Composite are significant at \(p < 0.001 \)

While the effect and distribution of sex and social class upon \(r \) are clear, the interaction of the two factor groups shows an unexpected pattern. Chart 1 shows that when the Social Class Composite is separated by Sex, the gradient stratification exhibited by the Social Class Composite as a whole is mirrored only by the males. The females display sharp stratification, exhibiting \(/r/- \) vocalization 100% of the time among Outdoor, Private employees then dropping to 0% for Civil Servants and hovering around 7% thereafter.

![Chart 1. Percentage of \(r \neq 0 \) by Social Class and Sex](image)

\(r = -0.42 \) (Males); \(r = -0.53 \) (Females)
Table 2 shows the results from a second variable rule analysis in which tokens of Red Sox Fans are excluded for the purpose of analyzing the effects of neighborhood on (r). Since the exclusion of tokens of Red Sox Fans fundamentally undermines the theoretical basis for the Social Class Composite, this variable is not included as a factor group in the analysis.

Table 2. Variable Rule Analysis of Social Factors Contributing to the probability of (r-0)
Excluding Tokens of Red Sox Fans

<table>
<thead>
<tr>
<th></th>
<th>Input = 0.833, Total N = 59</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>FW</td>
</tr>
<tr>
<td>Sex</td>
<td></td>
</tr>
<tr>
<td>Male</td>
<td>.77</td>
</tr>
<tr>
<td>Female</td>
<td>.07</td>
</tr>
<tr>
<td>Range</td>
<td></td>
</tr>
<tr>
<td>Neighborhood</td>
<td></td>
</tr>
<tr>
<td>Fenway Park</td>
<td>.82</td>
</tr>
<tr>
<td>Park Street / Government Center</td>
<td>.20</td>
</tr>
<tr>
<td>Harvard Square</td>
<td>.10</td>
</tr>
<tr>
<td>Kenmore Square</td>
<td>.39</td>
</tr>
<tr>
<td>Range</td>
<td></td>
</tr>
<tr>
<td>Age</td>
<td></td>
</tr>
<tr>
<td>50+</td>
<td>[.58]</td>
</tr>
<tr>
<td>40s</td>
<td>[.50]</td>
</tr>
<tr>
<td>30s</td>
<td>[.44]</td>
</tr>
<tr>
<td>20s</td>
<td>[.50]</td>
</tr>
<tr>
<td>Race</td>
<td></td>
</tr>
<tr>
<td>White</td>
<td>[.50]</td>
</tr>
<tr>
<td>Black</td>
<td>[.82]</td>
</tr>
<tr>
<td>Asian</td>
<td>[.04]</td>
</tr>
</tbody>
</table>

*Significant at p=0.008
§ Significant at p<0.001

While Age is not selected as statistically significant in either variable rule analysis, it does display a similar pattern of change in apparent-time as observed in Labov (1966) and Irwin & Nagy (2007). This pattern is shown in Chart 2, using percentages from Table 1. As seen with regard to Social Class, divergent patterns between the sexes are also found with regard to Age. Chart 3 shows that the change in apparent-time can be attributed largely to the females while males do not display a similar change in apparent-time.

10 An attempt was made to include Occupation (the set of factors comprising Social Class Composite minus the factor Red Sox Fans) as a factor group, but a high ratio of factors to tokens resulted in a mismatch between “Best stepping up run” and “Best stepping down run.”
That Race is non-significant in this model is unsurprising given the small sample size of Black and Asian informants and the lack of informants of other races. Considering the high levels of racial segregation in Boston by income and by neighborhood of residence (Stuart, 2000), it is likely that the centrality of Game 3 to the study’s design and the sample of neighborhoods in Boston unduly biased the selection of White informants. Thus, the results pertaining to Race will not be discussed in further depth.

5. Discussion

The data presented in Section 4 are now used to assess the social stratification and vitality of (r) in Boston. Consistent with prior research on the prestige of (r) in New York City (Labov, 1966) and in the U.S. as a whole (Labov, Ash & Boberg, 2006), (r-0) will be considered the non-standard variant and (r-1) the standard variant.\(^{11}\)

\(^{11}\) Qualitative evidence may indicate that (r-0) currently has more prestige in Boston than it did in New York City in 1966 (Bombardieri, 1999). Absent supporting quantitative data, this possibility will not be considered in the following discussion.
5.1 Social Class Composite

The results pertaining to Social Class Composite in Table 1 show that level of social class is inversely proportional with percentage of /r/-vocalization. This is unsurprising given that rhotic /r/ is generally accepted as the variant associated with global prestige in the US. Given Boston’s role as a center of commerce and academia—generally considered industries of high social class—it is reasonable that people of higher social classes in Boston would want to adopt the variant with global prestige.

Of more importance is the lack of a curvilinear pattern in the Social Class Composite, suggesting the absence of a systematic sound change generally found to originate in the medial social groups (Labov, 1980, p. 260). Rather, these data display a monotonic pattern consistent with stable variation or with a weak change from above (Labov, 1980). Upon closer inspection, the social stratification of (r) in Boston appears to be an integration of both of these accounts.

Chart 1 shows that this monotonic pattern is derived from two divergent curvilinear patterns. Women display a change in favor of (r-1) originating in the medial social group Civil Servants while men display a resistance to this change in the same social group. These patterns indicate that there is a change from above being initiated by the women, but that the effect of this change on the entire population is weak. By virtue of these observations and the results of Table 1 and Chart 1, any change of (r) in Boston as a whole is not systematic.

5.2 Age

The prime evidence by Irwin & Nagy (2007) that (r) is undergoing a change is found in their analysis of age, which shows a strong effect of age on (r). However, deducing change from careful speech alone is premature. Self-monitored, careful speech of the type gathered by Irwin & Nagy (2007) is at best an approximation of natural speech in an artificially constrained environment (Bell, 1984).

When the analyses of Age in Tables 1 and 2 are considered, no effect on (r) is apparent. When Age is examined in isolation (Chart 2), only a weak correlation (r = -0.41) emerges. The interaction of Age and Sex (Chart 3) shows that this weak correlation is due to significant divergence between males and females, for which each shows independently weak correlations (r = -0.16, Males; r = -0.20, Females). The orderly heterogeneity exhibited by females shows a decreasing use of (r-0) in apparent-time. However, this change is largely counteracted by an increasing use of (r-0) in apparent-time by males. The sole aberration in this pattern is found among males in their 30s. This aberration may be due to historical events during this period, particularly the Boston Bussing Crisis (1974-1988) during which Boston implemented forced bussing as a tool of desegregation in the public schools (Taylor, 1986; Frum, 2000). During this period, children from different neighborhoods, ethnicities and social classes interacted with each other in the same school. It is certain that vocalized /r/ and rhotic /r/ interacted in this environment, as well. Since females’ use of (r-0) was already so low, it is not surprising that any substitution of (r-0) with (r-1) would be most apparent among males.

Since neither the data on age reported here nor by Irwin & Nagy (2007) can be judged more reliable than the other, it would seem the two sets of data are on the surface incompatible. However, given the observations described above, the likelihood that Boston is displaying a similar change as observed in New York City (Labov, 1966) is remote. Therefore, I claim that the weak correlations between Age and (r) presented in this paper are not sufficient to indicate that (r) is undergoing a systematic change in Boston. If (r) is undergoing a change in Boston, it is at best far slower and more gradual than the change observed in New York City (Labov, 1966) and the assertions made by Irwin & Nagy (2007).
5.3 Sex

As shown clearly in Sections 5.1 and 5.2, males and females pattern very differently from one another. Tables 1 and 2 show that men use a higher frequency of the non-standard (r-0) than women. As a general principle, this pattern is observed in environments of stable variation (Fischer, 1958; Labov, 1990). However, since the standard variants in Boston and the U.S. as a whole are the same, these data would also be consistent with an analysis where women are leading a linguistic change of Boston (r) towards the current U.S. standard of rhotic /r/. In fact, Charts 1 and 3 show that females do appear to be leading a linguistic change, but that males’ resistance to this change yields an overall impression of stability.

These findings contradict Irwin & Nagy’s (2007), albeit surprised, observation that men and women use the same frequency of (r-0). This disparity may be attributed to the differences between casual and careful speech.

5.4 Neighborhood

The analysis of Neighborhood in Table 2 largely confirms the hypotheses that people working around Fenway Park would use the highest frequency of (r-0) while people working in Government Center and Harvard Square would use (r-0) less frequently. However, despite Kenmore Square’s proximity to Fenway Park, the analysis reveals that employees at Kenmore Square do not use comparable amounts of (r-0) as employees at Fenway Park, as predicted. It is possible that due to Kenmore Square’s proximity to Boston University, some of the young informants were college students who could not be visually identified.

Despite some explanatory inadequacy in relative ordering of neighborhoods by frequency of (r-0), the fact that neighborhood of employment is a significant factor in use of (r) provides further evidence that there is no systematic change of (r) in Boston. If there were, all Civil Servants would pattern together and all Clerks would pattern together regardless of the neighborhood where they work.

6. Conclusion

The data presented in this paper show (r) in Boston varies by sex, social class, and neighborhood of employment. Greater use of (r-0) among men, lower social classes, and employees in neighborhoods that claim strong local identity, all converge on a model that describes the variation of (r) in Boston as stable. This finding would suggest that Boston (r) has not consistently followed the model of either New England (Bloch, 1939; Kurath et al., 1939-41) or New York City (Labov, 1966). The question to be answered in future research is why Boston should pattern differently from either of these regions. An historical survey of Boston from 1939 to the present may suggest periods of time when social patterns in Boston have been different from those in New York City or in the rest of New England. One period in particular may be the Boston Bussing Crisis (1974-1988), as described in Section 5.2 (Taylor, 1986; Frum, 2000).

Furthermore, the data reported above show that Sex plays an integral role in the apparent stability of (r) in Boston. The divergent patterns exhibited by males and females in the distribution of (r) by Social Class and Age may suggest a high level of competition between the local prestige form embraced by males and the global prestige form embraced by females. However, this should not be confused with direct competition between males and females. As Eckert (1989, p. 254) shows, differentiation of the basis of gender is unlikely to be found between gender groups, but rather within gender groups. Investigation into the social origin of this competition that allows for such divergent patterns should be pursued further.
An equally important method of investigation into the causes of stability of (r) in Boston is to fill in the gaps that this study was unable to address. Firstly, a thorough study of (r) must be conducted with respect to race as the current results proved far from adequate. Moreover, it would be beneficial to reexamine the effects of age on (r) in order to tease apart the inconsistencies between the current data and Irwin & Nagy’s (2007) data. Lastly, the results reported on neighborhood of employment can only be viewed as preliminary as they cannot yet be adequately explained in their entirety. An examination of more neighborhoods over a greater range of the city should be undertaken.

References

