Due to a number of social influences, the Northern Russian dialect has been undergoing a rapid shift towards Standard Russian. Based on data from the small town of Pokcha in the Western Urals, the current study examines one aspect of this general change: a split of a post-alveolar fricative into two distinct phonemes. The analysis of data collected from twenty-nine residents of the town born in the period from 1910 to 1990 focuses on the transmission of the change through social networks and the role of the social factors of age, mobility, and education in this process. It examines both the general trend of the sound change in the population and some apparent individual deviations from the trend.

Introduction

This paper extends the investigation of sound change in Pokcha, a typical small Northern Russian community (Kochetov 2000, 2006), by examining another sociolinguistic process – the split of the retroflex post-alveolar fricative /ʂ/ into two phonemes, /ʂ/ and /ʃ/. As I will show, social factors such as age, education, and home background (whether a speaker was raised in town or out of town) play a crucial role in the distribution of the variants [ʂ] and [ʃ], as well as in the dynamics of the change in general. I will also show that a careful examination of apparently “anomalous” cases sheds light on the interaction of social factors involved in the process (cf. Chambers 2003).

1. Background: Pokcha

Pokcha is a small town (pop. 920) in the Western Urals, Russia, a predominantly rural community about 480 km north of the province’s main city, Perm’ (formerly Molotov). Administratively, it belongs to the Cherdyn’ region of the Perm’ province. This region, like other parts of the Western Urals, used to be sparsely populated by the indigenous

* I am grateful to Jack Chambers for providing inspiration, help, and encouragement throughout this project. This work has benefited from discussion with Joseph Schallert and Ed Burstynsky. I also thank Keren Rice, Tatyana Permyakova, and Irina Rusinova (Perm’ University) for their help in the organization of my fieldtrip to Russia. All errors are my own. This research was partly supported by a travel grant from the University of Toronto School of Graduate Studies.
Uralic-speaking Komi (Permyaks). Russians began to settle here in the 15th and 16th centuries as a part of the general eastward expansion (Chagin 1988). Most new settlers were peasants from the Russian North-West, driven by over-population, poverty, and religious tensions. The region, with Fort Pokcha as an administrative centre, became a Russian strategic outpost on the way to Siberia and the Southern Urals. With further waves of migration west and south from the region, Pokcha county, with few natural resources and diminished strategic importance, fell into a relative economic decline.

The socio-economic stagnation of the region was broken in the twentieth century. The Bolshevik revolution in 1917 was followed by a land reform that took property from the big local land-owners and turned it over to peasants. In the early 1930s the “collectivization” campaign was initiated on a country-wide scale, establishing collective farms and cracking down on “excessive” private land-owning. The campaign led to the elimination of the middle class and leveling of social distinctions in the region. Thus, the family of one of the speakers of the current study, Maria P., lost all property and was evicted from Pokcha in 1932, not to return until eight years later. At the same time the “cultural revolution” campaign aimed to eliminate illiteracy, as well as “religious superstitions”: new schools and libraries were set up in towns and in rural areas of the region; churches were closed and turned into clubs or warehouses, or simply destroyed. This happened to an old cathedral in Pokcha, which served as a farm warehouse in the 1930s, and was later blown up.

Due to its remoteness, the region became a convenient location for a number of labour camps (Gulags) where political and civil prisoners from all over the country were used as a free work-force at logging sites. Some residents of Pokcha, including Vladimir V. in my survey sample, used to work as guards in labour camps. During World War II (1941–45) almost all able-bodied men of the region were drafted and sent west, to the front. Out of necessity, women became involved in the economic life of the region at all levels. Prior to that it was hardly possible for a woman to occupy the position of collective farm manager or director of a trade cooperative, as did for example, Vera D. in the current survey sample. The overall inefficiency of collective farming prompted the Communist government to declare the country-wide amalgamation of these farms and elimination of small villages in the 1950–60s. Most of the 20 villages or so of the Pokcha county turned into ghost towns, with their population flooding into the administrative centre. Many old and middle-aged speakers in my sample were raised in those smaller villages and subsequently moved to Pokcha. Whether a person was raised in Pokcha or outside it became a social factor stratifying the otherwise relatively socially homogeneous population of the town.

The fall of Communist rule in 1992 brought political and economic changes. These changes, however, were not enough to stabilize the crippled economy of the region. The abrupt introduction of the free market pushed collective farming and many other state-owned businesses to the brink of collapse, while the conditions for the new type of market were not yet established. This resulted in a further decline in the standard of living, with mass unemployment and chronic wage debts in the region, giving an impetus to migration. Now most younger mobile people from Pokcha are moving to larger urban centres that have relatively more opportunities for employment and private enterprise.
For young residents of Pokcha, life in a city has become associated with success and prosperity, contributing to the already strong social pressure towards urbanization.

The local dialect, a descendent of the Northern Russian dialect of the 16th–17th centuries, existed in a relatively stable state for several centuries (Shtern & Erofeeva 1998). The major changes of the 20th century, particularly starting in the 1930s, could not leave the Pokcha dialect intact. The speech of the town, as the speech of rural Northern Russia in general, started to undergo a gradual shift towards the standard usage—“Standard Russian” (defined below). This shift was accompanied by a significant degree of variation, which is the focus of this study.

2. The variable

The change examined in the current study involves a split of the phoneme /ʂ/ (or rather further differentiation of its allophones) in the Pokcha dialect to /ʂ/ and /ʃ/, a process in the direction of Standard Russian, the prescribed norm based primarily on the educated speech of Moscow. The standard dialect has two voiceless post-alveolar fricatives: the retroflex (apical) post-alveolar /ʂ/ and the laminal post-alveolar /ʃ/. The contrast can be illustrated by a near-minimal pair /ʂutka/ ‘joke’ and /ʃuka/ ‘pike’. The latter consonant has two contextual allophones: the long [ʃː] occurs before vowels (e.g. /ʃuka/ [ʃuka] ‘pike’), and the short [ʃ] occurs elsewhere—word-finally and before consonants (e.g. /ovoʃnoj/ [ˈovaʃnoj] ‘vegetable’ adj.; cf. /smesnoj/ [ˈsmesnoj] ‘funny’) (cf. Timberlake 2004: 54–55, 65–67). The status of /ʃ/ as a phoneme is a relatively recent development in Standard Russian: it apparently arose in the Moscow dialect in the 17–18th centuries from the fricative-affricate cluster /ʂ + ʃt/ (e.g. /ʂtʃuka/ > /ʃuka/ ‘pike’; Gorshkova & Khaburgaev 1981: 120). Given its limited source, the phoneme is relatively infrequent compared to its counterpart /ʂ/.¹ The contrast /ʂ/ and /ʃ/, however, is well integrated in Russian phonology: /ʂ/ patterns with plain consonants, while /ʃ/ patterns with palatalized consonants (e.g. in backing and fronting adjacent vowels; Timberlake 2004: 29–40).

Based on X-ray tracings of /ʂ/ and /ʃ/ in Bolla (1981: 60, 64), the two consonants can be described as involving conflicting articulatory gestures. For /ʂ/, the tongue tip is raised towards the post-alveolar region and the tongue front is lowered; for /ʃ/, the tongue tip is lowered and the tongue front is raised to the post-alveolar region or the hard palate. Before vowels, the constriction for /ʃ/ is maintained for about 30–50% longer than for /ʂ/ (i.e. [ʃ] vs. [ʂ]) (Bolla 1981: 135–137). These articulatory differences result in a robust acoustic contrast. Figure 1 provides a sample spectrogram of the two sounds pronounced by a female speaker of Standard Russian in nonsense words [aʃa] and [aʃa].

As seen in the spectrogram, the duration of /ʃ/ is longer than the duration of /ʂ/ by 59 ms (i.e. about 35% longer). There are considerable differences in vowel transitions, measured at the offset of the preceding vowel (V1) and the onset of the following vowel (V2) (using a 10 ms window). For /ʃ/, F1 is lower, while F2 and F3 are higher than for /ʂ/, with

¹ A count of the occurrences of the letters corresponding to the two phonemes in a corpus of written Russian of over 93,100 words showed that /ʂ/ occurred approximately twice as frequently as /ʃ/.
the most substantial difference (of almost 800 Hz) in F2 at the onset of the following vowel. The FFT spectra of the two fricatives, measured at the midpoint of fricative noise (using a 30 ms window) are shown in Figure 2. The two spectra are relatively similar, with the primary peak for /ʃ/ being somewhat higher in frequency (at about 4100 Hz vs. 3800 Hz for /ʂ/) and more narrow in bandwidth. The spectrum of /ʂ/ has a pronounced secondary peak close to 6000 Hz and higher intensity at lower frequencies (below 2500 Hz). These observations are compatible with previously reported acoustic studies of the two consonants (e.g. Bolla 1981: 135–137).

Figure 1: A sample spectrogram of /ʂ/ [ʂ] and /ʃ/ [ʃː] as pronounced by a female speaker of Standard Russian; consonant duration and vowel offset/onset formant values are shown below.

| a ́ ʂ a | a ́ ʃː a |

| 161 ms | 220 ms |

<table>
<thead>
<tr>
<th>(V_1) offset</th>
<th>(V_2) onset</th>
<th>(V_1) offset</th>
<th>(V_2) onset</th>
</tr>
</thead>
<tbody>
<tr>
<td>F3 2556</td>
<td>2492</td>
<td>2651</td>
<td>2749</td>
</tr>
<tr>
<td>F2 1477</td>
<td>1296</td>
<td>1861</td>
<td>2071</td>
</tr>
<tr>
<td>F1 669</td>
<td>551</td>
<td>361</td>
<td>467</td>
</tr>
</tbody>
</table>

Figure 2: FFT spectra of the fricative noise of /ʂ/ [ʂ] and /ʃ/ [ʃː] from the same signal as in Figure 1.
The /ʂ/ and /ʃ/ of Standard Russian correspond to the phoneme /ʂ/ in the Pokcha dialect, the correspondence typical of many Northern Russian dialects (cf. Avanesov & Orlova 1965: 88–90). In these dialects, the original fricative-affricate cluster /ʂ/ + /tʃ/ has developed into /ʂ/, apparently through an earlier stage of /ʃ/ similar to Standard Russian (i.e. /ʃtʃuka/ > /fuka/ > /ʂuka/ ‘pike’). It therefore has merged with the phoneme /ʂ/. The merger, however, can be considered incomplete, since the phonetic length of the former /ʃ/ is still preserved: in some lexical items it is realized as a long [ʂ] (before vowels), while in other lexical items it is realized as a short [ʂ] (elsewhere).² Table 1 shows the phonological/phonetic similarities and differences between the two dialects. As we can see, in some lexical items (a) both Standard Russian and the Pokcha dialect have /ʂ/, while in other lexical items (b), Standard Russian has /ʃ/, while the Pokcha dialect has /ʂ/ (both contextually realized as either long or short).

<table>
<thead>
<tr>
<th>Standard Russian</th>
<th>The Pokcha dialect</th>
<th>Examples</th>
</tr>
</thead>
<tbody>
<tr>
<td>a. /ʂ/</td>
<td>/ʂ/</td>
<td>[ˈmaɡa] ‘Masha’ (name)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>[ˈʂutka] ‘joke’</td>
</tr>
<tr>
<td></td>
<td></td>
<td>[mɪʃ] ‘mouse’</td>
</tr>
<tr>
<td></td>
<td></td>
<td>[smiɕnoj] ‘funny’</td>
</tr>
<tr>
<td>b. /ʃ/ ([ʃ] or [ʃː])</td>
<td>/ʂ/ ([ʂ] or [ʂː])</td>
<td>S [ʃɑʃːik], P [ʃɑʃːik] ‘box’</td>
</tr>
<tr>
<td></td>
<td></td>
<td>S [ʃtuka], P [ʂtuka] ‘pike’</td>
</tr>
<tr>
<td></td>
<td></td>
<td>S [taˈvarjʃ], P [tɔˈvarjɕ] ‘comrade’</td>
</tr>
<tr>
<td></td>
<td></td>
<td>S [aʃnoj], P [oʃnoj] ‘vegetable’ adj.</td>
</tr>
</tbody>
</table>

² An alternative treatment of [ʂː] in prevocalic contexts is to consider it as a separate phoneme /ʂː/, contrastive with /ʂ/. In the absence of alternations, all cases of the word-final and preconsonantal [ʂ] would belong to the phoneme /ʂ/. While plausible, such an analysis is complicated by three factors. First, the dialect also has [ʂː] as a realization of the hetero-morphemic sequences /ʂ/+/ʂ/, /ʂ/+/ʃ/, and /z+/+tʃ/, for example /s-ʂɨtʃ/ [ʂɨtʃ] ‘to sew’ perfective. Second, the contrast /ʂ/ vs. /ʂː/ would be the only phonological contrast involving length (see also Timberlake 1993: 829 on /ʃ/ in Standard Russian). Third, given the relative infrequency of non-derived /ʃ/ in Russian, the prevocalic contrast /ʂ/ vs. /ʂː/ in the Pokcha dialect would be rather marginal. Although acknowledging the possibly contrastive status of [ʂː] in the Pokcha dialect, the current study will assume the traditional view of the non-derived [ʂ] as a variant of /ʂ/ (see Avanesov & Orlova 1965: 88–90 on [ʂ] in Northern Russian dialects).
adj.). The change examined in the current study thus is a split of the old Pokcha /ʂ/ into two phonemes, /ʂ/ and /ʃ/. This split is a reversal of the original, albeit phonetically incomplete, merger of /ʂ/ and /ʃ/ into /ʂ/. The focus here will be on the change in the quality of the fricative, rather than on its duration. The two sounds will be referred in the study to as variants [ʂ] and [ʃ] of the variable [ʂ] ~ [ʃ].

3. The sample and methodology

The speech sample included recorded spontaneous speech from twenty-nine informants, all residents of Pokcha. This sample has been previously used in the investigation of the vowel variable [o] ~ [a] (Kochetov 2000; together with data from additional speakers). The sample included 585 tokens (about 20 tokens per person) of the variable [ʂ] ~ [ʃ].³ Each token was coded for the social factors of age, sex, education, and the place where he/she was raised. The sample comprised subjects born in the period from 1910 to 1990 (Table 2). The speakers were divided into three major age groups: those born between 1910 and 1923 (Group 1), those born between 1929 and 1940 (Group 2), and those born between 1947 and 1990 (Group 3). Note that the latter group includes two speakers born in the late 1940s, three speakers born in the 1960s, one speaker born in the 1970s, three speakers born in the 1980s and one speaker born in 1990. Despite the age differences, speakers of this group appeared to be relatively homogeneous in their use of the variable. This group division was also motivated by the need to have similar numbers of speakers in each group. Each of the three groups included nine or ten speakers; there were seventeen men and fifteen women in the sample, fairly evenly distributed across the age groups.

Table 2: The division of speakers into three age groups employed in the study

<table>
<thead>
<tr>
<th>Age groups</th>
<th>Born in</th>
<th>Number of speakers</th>
<th>Men/Women</th>
</tr>
</thead>
<tbody>
<tr>
<td>Group 1</td>
<td>1910–1923</td>
<td>10</td>
<td>4/6</td>
</tr>
<tr>
<td>Group 2</td>
<td>1929–1940</td>
<td>9</td>
<td>5/4</td>
</tr>
<tr>
<td>Group 3</td>
<td>1947–1990</td>
<td>10</td>
<td>6/4</td>
</tr>
</tbody>
</table>

All the speakers in the study were born and raised either in Pokcha, or in smaller villages within 50 km. In my analysis, I contrasted the subjects raised in Pokcha with those from the outside, referring to this variable as the “home factor.” In terms of education, the speakers were divided into two groups based on the number of years of schooling: “less educated” (up to Grade 4 or up to Grade 7) and “more educated” (up to Grade 10 or more). The factors of occupation and class were not treated as independent variables and thus were not coded for. The sample was to a large degree homogeneous with respect to these factors. (See Kochetov 2000 for the details on the demographics of the speakers).

³ Over 60% of the tokens in the sample consisted of three frequent words: /jeʃo/ ‘still, yet’, /voobʃe/, and /vobʃem/ ‘in general’. All the other words in the sample occurred 1–5 times.
As an example of coding, (sefx2lK specifies an instance of the non-standard variant [ʂ]. The first letter, s, identifies the variant, [ʂ]; the second letter, e, specifies the lexical item the variant occurs in: /jeʃo/ ‘still, yet’ (one of the most frequent lexical items in the sample). The last letter, K, stands for the subject’s name, Ekaterina K. All the other symbols indicate social variables: the speaker’s age (x = Group 1), education (2 = Grade 1–7) and home factor (l = raised outside Pokcha).

After coding, all instances of the variable were tested for the influence and interaction of social and linguistic factors using the sociolinguistic statistical program GoldVarb, the Macintosh version of Varbrul (Rand & Sankoff 1991). The results of this statistical analysis are presented in the next sections.

4. Results

Figure 3 presents the results for all speakers, with the non-standard retroflex [ʂ] at the bottom and the standard post-alveolar [ʃ] at the top of each bar. We can observe that speakers vary significantly in the use of the two variants: the range of the non-standard use is from 100% for some speakers to zero for others. Noticeably, the relative distribution of the variants shows a strong correlation with the age of speakers. However, there are some apparent individual exceptions. The most extreme examples are Vera D. in Group 1 and Vladimir T. in Group 3 (speakers 10 and 23 in Figure 3). Vera D., one of the older subjects (born in 1923), scores 28% for the [ʂ] variant, while the average for her age group is 81%. Vladimir T., one of the younger subjects, shows a high percentage of non-standard [ʂ] at 84%, while the other speakers of the group show the minimal use of this variant: only 2%. To examine the general dynamics of the change across age groups in Section 4.1, I will exclude these two “anomalous” cases and will return to them in Section 4.2. (Another apparent case of inter-speaker variability in Group 2—speakers 17 and 18 vs. speakers 16 and 20—will be interpreted using the variable Sex).

Figure 3: The results for the consonant variable [ʂ] ~ [ʃ] for all speakers (S = ʂ; S’ = ʃ)
4.1. The change in the population

Table 3 shows the distribution of the two consonant variants with the individual subjects (27 out of 29) clustered in three age groups. We can see that the subjects born between 1910 and 1923 use the non-standard variant [ʂ] most of the time (86%), while the standard variant [ʃ] accounts for only 14% of all instances. Both variants are frequent in the speech of the subjects born between 1929 and 1940, with the new variant being slightly more common (58% vs. 42%). In the speech of the younger subjects, born between 1946 and 1990, the standard variant [ʃ] almost absolutely dominates over [ʂ] (99% vs. 1%). With respect to the variable, Group 3 is thus almost the exact opposite of Group 1, while Group 2 is transitional from Group 1 to Group 3.

Table 3: The results for the consonant variable [ʂ] ~ [ʃ] by three age groups

<table>
<thead>
<tr>
<th>Born in</th>
<th>[ʂ]</th>
<th>[ʃ]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1910–23</td>
<td>86%</td>
<td>14%</td>
</tr>
<tr>
<td>1929–40</td>
<td>58%</td>
<td>42%</td>
</tr>
<tr>
<td>1946–90</td>
<td>1%</td>
<td>99%</td>
</tr>
<tr>
<td>Overall</td>
<td>48%</td>
<td>52%</td>
</tr>
</tbody>
</table>

The numbers presented above reflect the means for each group (excluding speakers 9 and 23). There are still, however, some differences between older and younger speakers within each age group. As we see in Figure 4, older speakers within Group 1 (born between 1910 and 1916) use the non-standard variant more frequently by 11% than the younger speakers in the same group (born between 1919 and 1922). Within Group 2, older speakers (born between 1929 and 1932) use the non-standard variant by 27% more frequently than the younger speakers (born between 1934 and 1940). The distinction is no longer relevant for speakers of Group 3.

Figure 4: The use of the non-standard variant [ʂ] by older and younger speakers within the three major age groups

![Figure 4](image-url)
Other factors, such as education and the “home factor” were also found significant within certain age groups. Overall, the speakers who have received less than seven years of school (“less educated”, symbolized by < below) use the non-standard variant [ʂ] more frequently than the subjects who have completed their secondary education (“more educated”, symbolized by > below). Looking at Figure 5, we can see that the variable is important for the speakers of Group 1 (89% vs. 60%) and Group 2 (65% vs. 50%).

Figure 5: The use of the non-standard variant [ʂ] by less educated (Grade 1–7) and more educated (Grade 1–10 or more) speakers within three age groups

The substantial difference in Group 1, however, is due to the contrast between one “more educated” subject (speaker 6) and all the other “less educated” subjects, half of whom did not continue their studies beyond the primary school. By the time seven-year education became obligatory in Pokcha (in the late 1930s), these speakers were no longer of school age. The difference in the degree of education is also significant for Group 2, where four speakers had education up to Grade 10, while five other speakers had education up to Grade 7 only. This suggests that the standard variant was introduced and enforced in school relatively early and later became a marker of more educated town people in general. Orthography is likely to be an additional factor facilitating the spread of the change through education, since the two variants are distinguished orthographically (“ш” and “Щ”).

The factor Education is of no apparent importance for younger speakers, who show the near-100% use of the standard variant [ʃ]. This is likely to be related to the degree of schooling of the speakers in the group: the ten-year secondary education has been obligatory in Pokcha since the 1950s. Interestingly, the non-standard variant was found in the speech of one of the youngest speakers, Denis (born in 1988). Unlike some older children and adults in Group 3, Denis has apparently experienced less of an impact of education and is closer to the speech of his parents or grandparents. His tendency to be slightly more conservative was also reflected in his use of the vowel variable studied in Kochetov (2000).

Whether speakers were raised outside of Pokcha or in Pokcha (the “home factor”) was crucial for the transitional Group 2 (Figure 6). In this group, speakers raised outside of Pokcha had significantly more of the non-standard variant [ʂ] than the people raised in
town (73% vs. 29%). The factor was not important for Groups 1 and 3, with the exception of two individual cases discussed below. It should be noted that people raised in Pokcha usually had more schooling than subjects raised in near-by villages. Thus, the home factor closely correlates with education.

The overall differences between men and women in the use of the variable were not as robust as education and home factor differences. Women in Groups 1 and 2 used the non-standard variant [ʂ] somewhat more frequently than men (88% vs. 83% for Group 1 and 63% vs. 54% for Group 2). However, these differences were not significant due to the high inter-speaker variation. Thus in Group 2, there were women whose scores for [ʂ] were as high as 89% (#15 in Figure 3) and as low as 21% (#18). Similarly, in this group there were men whose scores for [ʂ] were as high as 75% (#13) and as low as 18% (#17). The factor of sex thus appears to be over-ridden by the factors of education and home (and possibly by other factors).

In sum, the analysis of the distribution of the variants [ʂ] and [ʃ] in the population in general reveals a robust trend: the change form [ʂ] to [ʃ]. Speakers’ age is the key factor in the use of the two variants. Older speakers (Group 1) use the non-standard variant most of the time, while younger speakers (Group 3) use the standard variant [ʃ] almost exclusively. The speakers of Group 2 show most variation, with some being more conservative than others. This variation can be largely explained by additional factors, such as the level of education and the “home factor.”

4.2 Outliers

I now return to the two outliers. Recall that with respect to the use of the variable [ʂ] ~ [ʃ], Vera D. was much less conservative than her age group, while Vladimir T. showed exactly the opposite pattern in his age group. What makes these people different from the other speakers from their corresponding groups and different from each other? Vera D. was born and raised in Pokcha, received a complete secondary education, followed by further vocational training outside the region. Her education and her status as a
town person gave her access to a prestigious job as director of the local trade cooperative, thus differentiating her from other speakers of her age group (Group 1), who had less education and less status in town. Vera D. is thus an “insider,” a person deeply involved in the activities of a social group and ahead of the group in her sociolinguistic behavior (Chambers 2003: 110–114).

In contrast to Vera D., Vladimir T. is the most conservative speaker in his age group (Group 3). He was born and raised in a small village 25 km north-west from Pokcha. He used to work as a low-skilled collective farmer and was now a road construction worker. His status, as well as his age (the oldest among the speakers in his group), made him different from the other speakers of the group, most of whom were raised in Pokcha, had more extensive education, and sometimes more prestigious jobs. Vladimir T. is thus an “oddball” (Chambers 2003: 93–110), an “outsider” whose social and linguistic behaviour does not conform to the norms for his group.

In sum, neither Vera D., nor Vladimir T. present exceptions to the general trend established for the population of Pokcha. They are simply either ahead of or behind their peers in adopting the emerging sociolinguistic standard. It is the degree of individual integration into social networks of the community that is the key to understanding the “anomalous” linguistic behavior of these two speakers. This finding underscores the importance of careful consideration of apparently exceptional individual cases in sociolinguistic research, the point convincingly argued for by Jack Chambers:

In quantitative analyses, it is tempting to concentrate on the vast body of subjects who fit into the bell curve and ignore those on the flanges. Arguably, the most essential findings will come from deepening our understanding of the bell group, but the flange groups, in so far as they are not merely idiosyncratic, can elucidate the others by contrast and perhaps shed light on the relative importance of interacting variables. (Chambers 2003: 96)

5. Conclusion

To conclude, the analysis of the data from twenty-nine residents of the Northern Russian town of Pokcha showed that the phonemic split /ʂ/ → /ʃ/ vs. /ʃ/ is a socially conditioned process. The change is part of the general standardization of the local dialect under the influence of Standard Russian. The change was apparently initiated in the 1930s, as reflected in the speech of the oldest subjects in the sample (Group 1); it was de facto completed in the 1960s, as reflected in the speech of the younger subjects in the sample (Group 3). The change was transmitted through or facilitated by the town educational system. Less educated speakers lagged behind more educated speakers within the same age group. The change was initiated in the town of Pokcha and gradually spread to surrounding villages. Speakers who were raised out of town and later moved to Pokcha lagged behind speakers of the same age who were raised in town. These two social factors at times interfered with the overall age-related trend of the change. Overall, the study
Alexei Kochetov contributes to the body of work shedding light on the role of social networks in the mechanism of sound change (see Labov 2001; Chambers 2003).

References

